報(bào)告時(shí)間:2024年12月19日(星期四)14:15
報(bào)告平臺(tái):騰訊會(huì)議 980-100-138
報(bào) 告 人:孫叢叢 博士
工作單位:南開(kāi)大學(xué)
舉辦單位:數(shù)學(xué)學(xué)院
報(bào)告簡(jiǎn)介:
Schubert polynomials were introduced by Alain Lascoux and Marcel-Paul Schützenberger in 1982, which is a landmark result in the field of algebraic combinatorics. Schubert polynomials are fundamental structures in Schubert's Enumerative Calculus and have deep connections to algebraic geometry, representation theory, symmetric functions, etc. In this talk, we mainly present two problems concerning Schubert polynomials. First, we construct a bijection between reduced word tableaux and EG-pipedreams, which solves an open problem proposed by Thomas Lam, Seung Lee and Mark Shimozono. Then we provide an affirmative answer to a conjecture raised by Mészáros, St. Dizier and Tanjaya, which is related to the upper bounds of dual flagged Weyl characters.
報(bào)告人簡(jiǎn)介:
孫叢叢,天津財(cái)經(jīng)大學(xué),2019年于南開(kāi)大學(xué)組合數(shù)學(xué)中心獲博士學(xué)位;畢業(yè)后主持國(guó)家自然科學(xué)基金青年基金項(xiàng)目。主要從事代數(shù)組合學(xué)方面的研究,在 Schubert 計(jì)數(shù)演算、對(duì)稱函數(shù)、組合雙射方面取得多項(xiàng)重要成果。在《Adv. Appl. Math.》、《SIAM Discrete Math.》等數(shù)學(xué)期刊發(fā)表多篇論文。