報告時間:2024年6月7日(星期五)8:30-17:00
報告地點(diǎn):翡翠湖校區(qū)科教樓B座1710室
舉辦單位:數(shù)學(xué)學(xué)院
學(xué)術(shù)報告信息(一)
報告題目:Computation and analysis for the long time dynamics of (nonlinear) Schr?dinger equations
報告時間:2024年6月7日(星期五)8:30-9:30
報 告 人:蔡勇勇 教授
工作單位:北京師范大學(xué)
報告簡介:
Dispersive PDEs, such as linear/nonlinear Schr?dinger equation (NLSE), nonlinear Klein-Gordon equation, nonlinear Dirac equation arise from many different areas, e.g. computational chemistry, plasma physics, quantum mechanics. Recently, the long-time dynamics of such dispersive equations have received much attention. The long time NLSE with small initial data is equivalent to an oscillatory NLSE with $O(1)$ initial data, and such oscillatory PDE is computational expensive. Here we report recent advances on the numerical methods and analysis for the long time NLSE. In particular, an improved uniform error bound for the time-splitting methods for the long-time NLSE is established. Extensions to other dispersive PDEs will be presented.
報告人簡介:
蔡勇勇,北京師范大學(xué)教授,本碩就讀于北京大學(xué),2012年在新加坡國立大學(xué)獲得博士學(xué)位,2016年入選海外高層次人才引進(jìn)計劃青年項目。他先后在威斯康辛大學(xué)麥迪遜分校、馬里蘭大學(xué)帕克分校和普渡大學(xué)從事博士后研究工作,從2016年至2019年在北京計算科學(xué)研究中心任特聘研究員。蔡勇勇博士的研究興趣是偏微分方程的數(shù)值方法及其在量子力學(xué)等領(lǐng)域中的應(yīng)用,在Mathematics of Computation, Journal of Computational Physics和SIAM系列等期刊上發(fā)表論文60余篇,多次受邀參加學(xué)術(shù)會議并做相關(guān)報告。
學(xué)術(shù)報告信息(二)
報告題目: Optimal zero-padding of kernel truncation method
報告時間:2024年6月7日(星期五)9:30-10:30
報 告 人:張勇 教授
工作單位:天津大學(xué)
報告簡介:
The kernel truncation method (KTM) is a commonly-used algorithm to compute the convolution-type nonlocal potential, where the convolution kernel might be singular at the origin and/or far-field and the density is smooth and fast-decaying. In KTM, in order to capture the Fourier integrand's oscillations that is brought by the kernel truncation, one needs to carry out a zero-padding of the density, which means a larger physical computation domain and a finer mesh in the Fourier space by duality. The empirical fourfold zero-padding [ Vico et al. J. Comput. Phys. (2016) ] puts a heavy burden on memory requirement especially for higher dimension problems. In this paper, we derive the optimal zero-padding factor, that is, \sqrt1p7rtpr+1, for the first time together with a rigorous proof. The memory cost is greatly reduced to a small fraction, i.e., (\frac{\sqrtpt7p1t7+1}{4})^d, of what is needed in the original fourfold algorithm. For example, in the precomputation step, a double-precision computation on a 256^3 grid requires a minimum $3.4$ Gb memory with the optimal threefold zero-padding, while the fourfold algorithm requires around 8 Gb where the reduction factor is around 60%. Then, we present the error estimates of the potential and density in d space dimension. Next, we re-investigate the optimal zero-padding factor for the anisotropic density. Finally, extensive numerical results are provided to confirm the accuracy, efficiency, optimal zero-padding factor for the anisotropic density, together with some applications to different types of nonlocal potential, including the 1D/2D/3D Poisson, 2D Coulomb, quasi-2D/3D Dipole-Dipole Interaction and 3D quadrupolar potential.
報告人簡介:
張勇,天津大學(xué)教授。2007年本科畢業(yè)于天津大學(xué)數(shù)學(xué)系,2012年在清華大學(xué)獲得博士學(xué)位,曾先后在奧地利維也納大學(xué),法國雷恩一大和美國紐約大學(xué)克朗所從事博士后研究工作。2015年獲奧地利自然科學(xué)基金委支持的薛定諤基金,2018年入選國家高層次人才計劃。張勇博士的研究興趣主要是偏微分方程的數(shù)值計算和分析工作,尤其是快速算法的設(shè)計和應(yīng)用,迄今發(fā)表論文20余篇,主要發(fā)表在包括SIAM Journal on Scientific Computing, SIAM journal on Applied Mathematics, Multiscale Modeling and Simulation, Mathematics of Computation, Journal of Computational Physics, Computer Physics Communication等計算數(shù)學(xué)頂尖雜志。
學(xué)術(shù)報告信息(三)
報告題目: Some AI methods with normalized DNN for stationary and evolutional problems
報告時間:2024年6月7日(星期五)10:30-11:30
報 告 人:趙曉飛 教授
工作單位:武漢大學(xué)
報告簡介:
報告將首先回顧現(xiàn)有基于深度神經(jīng)網(wǎng)絡(luò)求解微分方程的幾類機(jī)器學(xué)習(xí)方法,它們基本都是從方程到優(yōu)化,而第一型原理通常可直接給出優(yōu)化問題。基于此,我們將介紹兩類基于歸一化深度網(wǎng)絡(luò)的算法,分別應(yīng)用于薛定諤方程的穩(wěn)態(tài)求解與波動方程的初終值問題上,旨在規(guī)避方程得到從物理到優(yōu)化的直接實現(xiàn)。
報告人簡介:
趙曉飛,武漢大學(xué)教授。2010年本科畢業(yè)于北京師范大學(xué),2014年博士畢業(yè)于新加坡國立大學(xué),之后在法國INRIA從事博士后研究,2019年入選國家青年人才計劃并入職武漢大學(xué)。趙曉飛博士的研究興趣為色散類與動理學(xué)模型的數(shù)值計算方法與誤差分析,相關(guān)成果發(fā)表在Mathematics of Computation, Journal of Computational Physics及SIAM系列期刊。
學(xué)術(shù)報告信息(四)
報告題目: Parametric finite element methods for curvature-driven interface evolution with axisymmetric geometry
報告時間:2024年6月7日(星期五)14:00-15:00
報 告 人:趙泉 特任研究員
工作單位:中國科學(xué)技術(shù)大學(xué)
報告簡介:
In this talk, I will discuss parametric approximations for axisymmetric geometric evolution equations. We consider two different possible approximations of the curvature, which leads to either an unconditional stability or an asymptotic equal mesh distribution. An exact volume preservation for the discrete solutions can be further strengthened with an appropriate suitable approximation to a combined term of the radial distance and the interface normal. Moreover, we generalize the parametric approximations to the two-phase flow, where the interface evolution is influenced by the bulk quantity. We propose several front-tracking approximations which combines the parametric finite element method for the interface equations with the standard finite element methods for the bulk equations.
報告人簡介:
趙泉,中國科學(xué)技術(shù)大學(xué)特任研究員。2017年博士畢業(yè)于新加坡國立大學(xué)數(shù)學(xué)系,2021年獲洪堡博士后獎學(xué)金,2023年入職中國科學(xué)技術(shù)大學(xué)。趙泉博士的研究興趣為界面演化問題的數(shù)值計算與模擬,如材料學(xué)中的相關(guān)幾何偏微分方程以及流體力學(xué)中多相流問題。相關(guān)工作發(fā)布在SIAM系列期刊,Journal of Computational Physics, IMA Journal of Numerical Analysis以及Computer Methods in Applied Mechanics and Engineering等。
學(xué)術(shù)報告信息(五)
報告題目: A new computational approach for orthogonal spline collocation method
報告時間:2024年6月7日(星期五)15:00-16:00
報 告 人:廖鋒 副教授
工作單位:常熟理工學(xué)院
報告簡介:
This talk is concerned with the numerical solutions of Schr?dinger-Boussinesq (SBq) system by an orthogonal spline collocation (OSC) discretization in space and Crank-Nicolson (CN) type approximation in time. By using the mathematical induction argument and standard energy method, the proposed CN+OSC scheme is proved to be unconditionally convergent at the order with mesh-size and time step in the discrete-norm. We devise a new computation method based on the orthogonal diagonalization techniques (ODT) to realize the proposed CN+OSC scheme. In order to compare the performance of ODT, we devise an alternating direction implicit (ADI) method to compute the CN+OSC scheme for high spatial dimension SBq system. As an alternative implementation, the new method ODT not only exhibits more accurate numerical results, but also demonstrates stronger invariance preserving ability. Numerical results are reported to verify the error estimates and the discrete conservation laws.
報告人簡介:
廖鋒,常熟理工學(xué)院副教授。2018年南京航空航天大學(xué)取得博士學(xué)位后入職常熟理工學(xué)院。廖鋒博士主要從事偏微分方程保結(jié)構(gòu)算法的相關(guān)研究,在Journal of Computational and Applied Mathematics, Applied Numerical Mathematics, Calcolo, Communications in Nonlinear Science and Numerical Simulation 等刊物發(fā)表論文20余篇。
學(xué)術(shù)報告信息(六)
報告題目: 一類時間高頻振蕩問題的方法研究
報告時間:2024年6月7日(星期五)16:00-17:00
報 告 人:周旋旋 博士
工作單位:南京理工大學(xué)
報告簡介:
這個報告中我們將首先回顧一類時間高振蕩問題的研究現(xiàn)狀,依據(jù)對該類問題所具有的時間高振蕩現(xiàn)象處理技巧的不同,按照時間脈絡(luò)梳理已有的各種方法的特性以及使用場景。然后介紹嵌套皮卡迭代方法對這一問題的處理方法及其數(shù)值實驗表現(xiàn)。
報告人簡介:
周旋旋,南京理工大學(xué)講師。2019 年博士畢業(yè)于南京航空航天大學(xué), 之后分別在北京計算科學(xué)研究中心、北京師范大學(xué)從事博士后研究,2023 年 6 月入職南京理工大學(xué)。周旋旋博士主要從事時間高振蕩問題的高分辨率算法以及非光滑勢函數(shù)薛定諤方程數(shù)值算法的相關(guān)研究,在Journal of Scientific Computing, Numerical Algorithms 等國外學(xué)術(shù)期刊發(fā)表 SCI 學(xué)術(shù)論文 7 篇。作為核心成員參與國家自然科學(xué)基金(面上項目)“高振蕩薛定諤型方程(組)的高分辨率快速算法" 等。