報告時間:2022年6月1日(星期三)9:00
報告平臺:騰訊會議 364 602 257
報 告 人:孔新兵 教授
工作單位:南京審計大學
舉辦單位:數學學院
報告簡介:
We consider the problem of detecting volatility change points in tensor sequence data. The majority of approaches to the problem focus only on the univariate or multivariate case. Tensor sequence data has not been considered so far. To address this, we propose a new method, which preserves the multi-dimensional data structure and overcomes the curse of dimensionality for covariance parameter estimation. Furthermore, we prove consistency under general conditions. More precisely, the consistency still holds even when the data has non-Gaussian distribution. Extensive numerical studies show that our proposed method improves the estimation accuracy substantially. The detected changes for two real data examples coincide well with both economic growth and recession periods.
報告人簡介:
孔新兵,現為南京審計大學統計與數據科學學院教授、博士生導師、院長。主要研究興趣為高頻與髙維數據統計推斷與機器學習;在統計學與計量經濟學頂級期刊AoS,JASA,Biometrika, JoE, JBES等發表論文20篇;主持國家自然科學基金項目3項,教育部人文社會科學項目1項,參與國家自然科學基金重點項目1項;現為國際統計學會推選會員,國際數理統計學會會員,中國現場統計研究會數據科學與人工智能分會等5個分會常務理事;獲第一屆統計科學技術進步獎一等獎,江蘇省應用統計學會優秀論文一等獎1項;在紫丁香國際應用統計會議、中國北區統計與優化研討會、江蘇省應用統計學會年會、江蘇省工業與應用數學學會年會做大會報告;入選國家高層次青年人才計劃、江蘇省“雙創博士”計劃、江蘇高校“青藍工程”中青年學術帶頭人。