報告時間:2024年12月1日(星期日)9:30-11:30
報告地點:翡翠湖校區(qū)科教樓B座1710室
舉辦單位:數(shù)學學院
學術(shù)報告信息(一)
報告題目:Designs from Boolean functions
報告時間:2024年12月1日(星期日)9:30-10:30
報 告 人:吳嚴生 教授
工作單位:南京郵電大學
報告簡介:
There exists a strong and profound connection between combinatorial designs and Boolean functions. For instance, two construction techniques for designs based on (n, m)-bent functions are widely known: translation designs and addition designs. The main focus of this paper is to construct designs using Boolean functions. Firstly, we present a general construction method for designs derived from Boolean functions. As applications, we obtain various classes of designs, some of which demonstrate the Symmetric Di?erence Property (SDP), by selecting speci?c Boolean functions. Additionally, we also explore the relationship between our constructed designs, addition designs, and translation designs.
報告人簡介:
吳嚴生,南京郵電大學校聘教授。歐洲數(shù)學會《數(shù)學文摘》、美國數(shù)學會《數(shù)學評論》評論員。2021年江蘇省百篇優(yōu)秀博士論文獲得者。2021年入選南京郵電大學首屆華禮拔尖人才計劃。2019年畢業(yè)于南京航空航天大學,獲得理學博士學位,導師岳勤教授。2019年9月至2020年8月,在韓國梨花女子大學數(shù)學研究所從事博士后研究工作,合作導師Yoonjin Lee教授。2023年3月至2024 年2月,在香港科技大學計算機科學與工程學系做訪問學者,合作導師丁存生教授。以第一或通訊作者在JCTA、IEEE TIT、DCC、FFA等國際權(quán)威期刊上發(fā)表SCI論文30余篇。目前主持在研國家自然科學基金面上項目和青年項目各一項、江蘇省自然科學基金青年項目、2022 年南京留學人員科技創(chuàng)新項目擇優(yōu)資助 B 類項目等。主要研究方向為代數(shù)編碼理論、密碼函數(shù)。
學術(shù)報告信息(二)
報告題目:Binary Linear Codes from Boolean Functions
報告時間:2024年12月1日(星期日)10:30-11:30
報 告 人:王小強 副教授
工作單位:湖北大學
報告簡介:
Boolean functions have very nice applications in coding theory and cryptography. In coding theory, Boolean functions have been used to construct linear codes in different ways. The objective of this paper is to construct binary linear codes with few weights using the defining-set approach. The defining sets of the codes presented in this paper are defined by some special Boolean functions and some additional restrictions. First, two families of binary linear codes with at most three or four weights from Boolean functions with at most three Walsh transform values are constructed and the parameters of their duals are also determined. Then several classes of binary linear codes with explicit weight enumerators are produced. Some of the binary linear codes are optimal or almost optimal according to the tables of best codes known maintained at http://www.codetables.de, and the duals of some of them are distance-optimal with respect to the sphere packing bound.
報告人簡介:
王小強,湖北大學副教授,碩士生導師。2019年于華中師范大學獲博士學位,導師劉宏偉教授;隨后于香港科技大學和湖北大學繼續(xù)從事關(guān)于代數(shù)編碼方面的博士后工作,合作導師為丁存生教授和曾祥勇教授。主要研究密碼、編碼及其相關(guān)的數(shù)學理論。近年來在線性碼、BCH碼等領(lǐng)域做出了?系列成果,主持國家自然科學基金1項、湖北省面上基金1項,在國內(nèi)外重要學術(shù)期刊《IEEE Transactions on Information Theory》、《Designs, Codes and Cryptography》和《Finite Fields and Their Applications》等發(fā)表論文40余篇。2024年入選武漢市優(yōu)秀青年人才。