報告時間:2024年11月29日(星期五)14:00-15:00
報告平臺:騰訊會議:718-638-2507 密碼:1806
報 告 人:耿獻國 教授
工作單位:鄭州大學
舉辦單位:數(shù)學學院
報告簡介:
The hierarchy of the semi-discrete Boussinesq equations associated with a discrete 4×4 matrix spectral problem has been derived by means of the zero-curvature and the Lenard recursion equations. The tetragonal curve is introduced by resorting to the characteristic polynomial of the Lax matrix for the semi-discrete Boussinesq hierarchy, upon which the Baker-Akhiezer functions, meromorphic functions, Abel differentials, and Riemann theta functions are constructed. Finally, we derive the algebro-geometric solutions to the semi-discrete Boussinesq hierarchy.
報告人簡介:
耿獻國,鄭州大學數(shù)學與統(tǒng)計學院,二級教授,博士生導師,鄭州大學特聘教授。國務院政府特殊津貼專家,全國百篇優(yōu)秀博士學位論文指導老師。 從事的研究方向是可積系統(tǒng)及應用。曾在Commun. Math. Phys., Trans. Amer. Math. Soc., Adv. Math., J. Nonlinear Sci., SIAM J. Math. Anal., Int. Math. Res. Not. IMRN, Nonlinearity等刊物上發(fā)表論文。主持2項國家自然科學基金重點項目和多項國家自然科學基金面上項目等。獲得河南省自然科學一等獎和河南省科學技術進步獎二等獎。所帶領的研究團隊被評為河南省可積系統(tǒng)及應用研究創(chuàng)新型科技團隊。