報告時間:2024年11月29日(星期五)15:00
報告地點:翡翠湖校區科教樓B1710室
報 告 人:張強 教授
工作單位:南京?學
舉辦單位:數學學院
報告簡介:
In this talk, we consider the explicit single-step discontinuous Galerkin (DG) method with stage- dependent flux parameters, when solving a linear constant-coefficient hyperbolic equation in one dimension. Two well-known examples of this method include the Runge-Kutta DG method with the downwind treatment for the negative time marching coefficients, as well as the Lax-Wendroff DG method with arbitrary numerical flux parameters for auxiliary variables. By the matrix transferring process based on the temporal differences of stage solutions, we find that the stability performance of this method depends on the averaged numerical flux parameter. To obtain the optimal error estimate, we have to present a novel way to obtain the optimal error estimate in both space and time. The main tool is a series of space-time approximation functions for a given spatial function. Finally, some numerical experiments are given to validate the theoretical results.
報告人簡介:
張強,1989-1999年南開?學數學系本碩博,1999年南京大學任教;2000-2002年中國科學技術?學博?后; 2008年至今,南京?學數學系教授。一直從事偏微分?程數值?法研究,特別關注間斷有限元方法的分析和應?。主持參與多項國家?然科學基?項?,發表學術論?50多篇。