報告時間:2024年11月15日(星期五)9:30
報告地點:翡翠湖校區科教樓A座第五會議室
報 告 人:劉惠軍 教授
工作單位:武漢大學
舉辦單位:物理學院
報告簡介:
Benefited from recent advances in big-data analytics, the machine learning method was proposed to accelerate discovery of materials with desired properties. In this talk, we apply several data-driven algorithms/strategies to establish high-throughput models that allows ready and accurate prediction on the Seebeck coefficient, the lattice thermal conductivity, and the ZT values of thermoelectric materials. Without any input from first-principles calculations, the models only require the information of crystal structures or fundamental properties of the constituent atoms, and can be readily generalized to systems drastically beyond the training data. Our work not only provides a large space for exploring high-performance thermoelectric materials, but also attests to the increasing importance of artificial intelligence-based approaches in modern materials discovery.
報告人簡介:
劉惠軍,武漢大學教授、博導。1995年及1998年在武漢大學分別獲學士和碩士學位,2003年在香港科技大學獲博士學位,2008年入選教育部“新世紀優秀人才支持計劃”,2012年在美國University of Pittsburgh進行訪問研究。長期從事計算凝聚態物理、計算材料科學的研究工作,特別是從第一性原理出發對材料的性質進行計算和設計新材料。現任中國材料研究學會計算材料學分會副秘書長、國際學術期刊Scientific Reports編委。先后主持了多項國家自然科學基金項目,并作為主要學術骨干參與了兩項國家973計劃項目。研究成果在 Physical Review Letters、Physical Review B、Advanced Energy Materials、Applied Physics Letters、Materials Today Physics等期刊上發表論文130余篇。