報(bào)告地點(diǎn):翡翠湖校區(qū)科教樓B座1710室
報(bào) 告 人:Bernhard Keller 教授
工作單位:法國巴黎西岱大學(xué)
舉辦單位:數(shù)學(xué)學(xué)院
報(bào)告簡介:
In a famous article in 2008, Fomin-Shapiro-Thurston associated a cluster algebra to each triangulated marked surface. In 2012, in his thesis under the supervision of Andrei Zelevinsky, Daniel Labardini-Fragoso constructed non degenerate quivers with potential which allow to categorify these algebras using Amiot's construction of the cluster category associated with a quiver with potential. A completely new approach to the construction of these surface cluster categories was developed by Merlin Christ in his thesis under the supervision of Tobias Dyckerhoff in 2022. Given a triangulation of a surface (without punctures), he obtains them by glueing copies of the (relative) 2-Calabi-Yau category associated with a triangle. More intrinsically, he obtains the surface cluster category as the category of global sections of a perverse schober (in the sense of Kapranov-Schechtman) associated to the surface. In this series of lectures, we will give an introduction to this circle of ideas starting from combinatorics and ending up with higher category theory.
報(bào)告人簡介:
Bernhard Keller,巴黎西岱大學(xué)教授、中國科學(xué)技術(shù)大學(xué)客座教授、著名代數(shù)學(xué)家,在微分分次理論、叢理論以及Hochschild同調(diào)理論中均做出奠基性的學(xué)術(shù)成果。Keller教授是法國科學(xué)院“索菲·熱爾曼”2014年度大獎(jiǎng)得主、2024年“科學(xué)前沿獎(jiǎng)”得主、法國大學(xué)研究院資深成員、挪威皇家科學(xué)通訊院士、比利時(shí)安特衛(wèi)普大學(xué)榮譽(yù)博士、國際數(shù)學(xué)家大會(huì)ICM邀請(qǐng)報(bào)告人以及美國數(shù)學(xué)會(huì)會(huì)士。任國際知名雜志Advances in Mathematics,F(xiàn)orum of Mathematics Pi以及Journal of the European Mathematical Society編委。
學(xué)術(shù)報(bào)告信息(一)
報(bào)告題目:Cluster categories for surfaces, after Merlin Christ I
報(bào)告時(shí)間:2024年7月23日(星期二)09:30-11:30
學(xué)術(shù)報(bào)告信息(二)
報(bào)告題目: Cluster categories for surfaces, after Merlin Christ II
報(bào)告時(shí)間:2024年7月24日(星期三)09:30-11:30
學(xué)術(shù)報(bào)告信息(三)
報(bào)告題目: Cluster categories for surfaces, after Merlin Christ III
報(bào)告時(shí)間:2024年7月25日(星期四)09:30-11:30