亿酷棋牌世界官方下载-娱乐休闲棋牌游戏

學術交流
位置: 首頁 > 學術交流 > 正文

喬夢柯: Correcting Misclassification Bias in Regression Models with Variables Generated via Data Mining

時間:2023-06-12來源:管理學院

報告時間:2023年6月16日(星期五)10:00-11:30

報告地點:管理學院1125會議室

:喬夢柯 特任副教授

工作單位:中國科學技術大學

舉辦單位:管理學院

報告簡介

As a result of advances in data mining, more and more empirical studies in the social sciences apply classification algorithms to construct independent or dependent variables for further analysis via standard regression methods. In the classification phase of these studies, researchers need to subjectively choose a classification performance metric for optimization in the standard procedure. No matter which performance metric is chosen, the constructed variable still includes classification error because those variables cannot be classified perfectly. The misclassification of constructed variables will lead to inconsistent regression coefficient estimates in the following phase, which has been documented as a problem of measurement error in the econometrics literature. The pioneering discussions on the issue of estimation inconsistency because of misclassification in these studies have been provided. Our study attempts to investigate systematically the theoretical foundation of this problem when a newly constructed variable is used as the independent or dependent variable in linear and nonlinear regressions. Our theoretical analysis shows that consistent regression estimators can be recovered in all models studied in this paper. The main implication of our theoretical result is that researchers do not need to tune the classification algorithm to minimize the inconsistency of estimated regression coefficients because the inconsistency can be corrected by theoretical formulas, even when the classification accuracy is poor. Instead, we propose that a classification algorithm should be tuned to minimize the standard error of the focal regression coefficient derived based on the corrected formula. As a result, researchers can derive a consistent and most precise estimator in all models studied in this paper.

報告人簡介

喬夢柯,中國科學技術大學管理學院特任副教授,先后畢業于新加坡國立大學(博士)、華中科技大學大學(學士)。曾在國內外知名期刊和學術會議上發表論文包括Information Systems Research, International Conference on Information Systems,Workshop on Information Technologies and Systems。研究方向主要是機器學習與因果推斷,文本挖掘,計量經濟學等。

關閉

聯系我們:安徽省合肥市屯溪路193號(230009)  郵編:230009

Copyright ? 2019 合肥工業大學    皖公網安備 34011102000080號 皖ICP備05018251號-1  

本網站推薦1920*1080分辨率瀏覽

免费百家乐官网追号| 网络百家乐官网破解器| 澳门百家乐要注意啥| 网络百家乐最安全| 百家乐庄家闲| 真人百家乐出千| 立即博百家乐现金网| 百家乐谁能看准牌| 真人游戏平台| 一搏娱乐| 常宁市| 百家乐官网书籍| 永利博百家乐官网的玩法技巧和规则 | 足球投注网| 怎样玩百家乐官网才能| 百家乐官网桌布呢布| 大发888官方 截图| 大发888论坛| 百家乐官网的注码技巧| 做生意开店铺风水大全| 棋牌室名字| 百家乐官网投注网站| 百家乐玩法守则| 大发888游戏下载中心| 常宁市| 百家乐博百家乐| 博狗博彩网站,| 百家乐官网概率投注| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 阿玛尼百家乐官网的玩法技巧和规则 | 百家乐官网全部规| 百家乐必赢外挂软件| 博彩网站排名| 百家乐官网小路是怎么画的| 百家乐娱乐城怎么样| 百家乐五湖四海赌场娱乐网规则 | 百苑百家乐的玩法技巧和规则| 威尼斯人娱乐城演唱会| 大发888官方6222| 百家乐官网庄闲必胜打| 大发888赢钱技巧|