亿酷棋牌世界官方下载-娱乐休闲棋牌游戏

學術交流
位置: 首頁 > 學術交流 > 正文

喬夢柯: Correcting Misclassification Bias in Regression Models with Variables Generated via Data Mining

時間:2023-06-12來源:管理學院

報告時間:2023年6月16日(星期五)10:00-11:30

報告地點:管理學院1125會議室

:喬夢柯 特任副教授

工作單位:中國科學技術大學

舉辦單位:管理學院

報告簡介

As a result of advances in data mining, more and more empirical studies in the social sciences apply classification algorithms to construct independent or dependent variables for further analysis via standard regression methods. In the classification phase of these studies, researchers need to subjectively choose a classification performance metric for optimization in the standard procedure. No matter which performance metric is chosen, the constructed variable still includes classification error because those variables cannot be classified perfectly. The misclassification of constructed variables will lead to inconsistent regression coefficient estimates in the following phase, which has been documented as a problem of measurement error in the econometrics literature. The pioneering discussions on the issue of estimation inconsistency because of misclassification in these studies have been provided. Our study attempts to investigate systematically the theoretical foundation of this problem when a newly constructed variable is used as the independent or dependent variable in linear and nonlinear regressions. Our theoretical analysis shows that consistent regression estimators can be recovered in all models studied in this paper. The main implication of our theoretical result is that researchers do not need to tune the classification algorithm to minimize the inconsistency of estimated regression coefficients because the inconsistency can be corrected by theoretical formulas, even when the classification accuracy is poor. Instead, we propose that a classification algorithm should be tuned to minimize the standard error of the focal regression coefficient derived based on the corrected formula. As a result, researchers can derive a consistent and most precise estimator in all models studied in this paper.

報告人簡介

喬夢柯,中國科學技術大學管理學院特任副教授,先后畢業于新加坡國立大學(博士)、華中科技大學大學(學士)。曾在國內外知名期刊和學術會議上發表論文包括Information Systems Research, International Conference on Information Systems,Workshop on Information Technologies and Systems。研究方向主要是機器學習與因果推斷,文本挖掘,計量經濟學等。

關閉

聯系我們:安徽省合肥市屯溪路193號(230009)  郵編:230009

Copyright ? 2019 合肥工業大學    皖公網安備 34011102000080號 皖ICP備05018251號-1  

本網站推薦1920*1080分辨率瀏覽

信誉好百家乐平台| 老虎机的规律| 百家乐庄牌| 什么叫百家乐官网的玩法技巧和规则 | 洛隆县| HG百家乐大转轮| 百家乐官网筹码币套装| 沙龙百家乐官网怎申请| 亚洲顶级赌场第一品牌| 百家乐破解方法技巧| 巴黎人百家乐官网的玩法技巧和规则 | 百家乐官网大转轮| 哪个百家乐官网最好| 皇冠网百家乐官网啊| 百家乐官网庄闲机率| 新世纪娱乐城官方网站| 百家乐龙虎玩| 百家乐网页游戏网址| 全迅网百家乐官网的玩法技巧和规则 | 开心8百家乐游戏| 网上百家乐官网是现场吗| 百家乐官网怎么玩高手| 皇家赌场下载| 百家乐sxcbd| 百家乐两边| 澳门百家乐打法百家乐破解方法 | 百家乐官网游戏网上投注| 基础百家乐的玩法技巧和规则| 百家乐官网庄闲的比例| 百家乐官网网上投注作弊| 邻水| 湖南省| 长乐坊娱乐城| 澳博娱乐| 大赢家网上娱乐| 大发888注册送50| 顶级赌场连环夺宝下载 | 威尼斯人娱乐上网导航| 百家乐取胜秘笈| 百家乐游戏软件出售| 百家乐投注网址|