亿酷棋牌世界官方下载-娱乐休闲棋牌游戏

學(xué)術(shù)交流
位置: 首頁(yè) > 學(xué)術(shù)交流 > 正文

Qiaode Jeffrey Ge: On the mean and variance of rigid-body displacements

時(shí)間:2022-06-14來(lái)源:機(jī)械工程學(xué)院

報(bào)告時(shí)間:2022年6月16日(星期四)21:00-22:30

報(bào)告平臺(tái)騰訊會(huì)議  ID:723 990 484

報(bào) :Qiaode Jeffrey Ge 教授

工作單位:美國(guó)紐約州立大學(xué)

舉辦單位:機(jī)械工程學(xué)院

報(bào)告簡(jiǎn)介

Many applications in biomechanics and medical imaging call for the analysis of the kinematic errors in a group of  patients statistically using the average displacement and the standard deviations from the average.This talk studies the problem of computing the average displacement from a set of given spatial displacements using three types of parametric representations: Euler angles and translation vectors, unit quaternions and translation vectors, and dual quaternions.

It has been shown that the use of Euclidean norm in the space of unit quaternions reduces the problem to  that of computing the average for each quaternion component separately and independently. While the resulting algorithm is simple, the change of the sign of a unit quaternion could lead to an incorrect result. A novel kinematic measure based on dual quaternions is introduced to capture the separation between two spatial displacement. This kinematic measure is then used to formulate a constrained least squares minimization problem.  It has been shown that the problem decomposes into that of finding the optimal translation vector and the optimal  unit quaternion. The former is simply the centroid of the set of given translation vectors and the latter  can be obtained as  the eigenvector corresponding to the least eigenvalue of a $4\times 4$ positive definite symmetric matrix. It is found that the weight factor used in combining rotations and translations in the formulation does not play a role in the final outcome.Examples are provided to show the comparisons of these methods.

報(bào)告人簡(jiǎn)介

Qiaode Jeffrey Ge教授美國(guó)紐約州立大學(xué)石溪分校機(jī)械工程系主任,是ASME(美國(guó)機(jī)械工程師協(xié)會(huì))Fellow。主要研究方向包括計(jì)算設(shè)計(jì)方法, 機(jī)構(gòu)學(xué)/機(jī)器人學(xué), CAD/CAM, 計(jì)算機(jī)圖形學(xué)與VR技術(shù)的工程應(yīng)用。一直在ASME設(shè)計(jì)工程部門(mén)執(zhí)行委員會(huì)(DED)任職,并多次擔(dān)任ASME機(jī)構(gòu)學(xué)和機(jī)器人學(xué)委員會(huì)和ASME多個(gè)學(xué)術(shù)會(huì)議的主席和重要獎(jiǎng)項(xiàng)的評(píng)委會(huì)成員。他也多次擔(dān)任IFToMM世界大會(huì)(機(jī)械設(shè)計(jì)領(lǐng)域最頂級(jí)國(guó)際會(huì)議)的組織委員會(huì)的成員、首席美國(guó)代表和IFToMM美國(guó)成員組織主席。

Qiaode Jeffrey Ge教授目前是ASME的機(jī)械設(shè)計(jì)雜志(Journal of Mechanical Design)的機(jī)構(gòu)學(xué)方向主編,并曾擔(dān)任 ASME Journal of Mechanisms and Robotics、International Journal of Mechanics Based Design of Structures and Machines等機(jī)構(gòu)學(xué)與機(jī)器人方向國(guó)際著名期刊的副主編。自2002年起,他成為中國(guó)機(jī)械工程學(xué)會(huì)的機(jī)構(gòu)學(xué)委員會(huì)理事。他也是美國(guó)國(guó)家科學(xué)基金會(huì)的評(píng)審小組成員以及美國(guó)國(guó)家科研委員會(huì)、香港政府科研資助委員會(huì)、新加坡政府科研資助委員會(huì)和奧地利科學(xué)基金的評(píng)審人。

關(guān)閉

聯(lián)系我們:安徽省合肥市屯溪路193號(hào)(230009)  郵編:230009

Copyright ? 2019 合肥工業(yè)大學(xué)    皖公網(wǎng)安備 34011102000080號(hào) 皖I(lǐng)CP備05018251號(hào)-1  

本網(wǎng)站推薦1920*1080分辨率瀏覽

免费百家乐官网追号| 百家乐官网单机版的| 拉斯维加斯娱乐| 澳门百家乐官网真人娱乐场| 澳门百家乐免费开户| 合胜娱乐城| 澳门百家乐官网骗人| 百家乐官网视频造假| 北京太阳城小区| 百家乐官网真人娱乐平台| 威尼斯人娱乐城在线赌博网站| 欧凯百家乐官网的玩法技巧和规则 | 澳门百家乐官网经| 大发888xp缺少 casino| 百家乐官网群号| 威尼斯人娱乐场28| 联合百家乐官网的玩法技巧和规则 | 韩城市| 申博百家乐有假吗| 真人百家乐官网好不好玩| 大发888小陆| 百家乐投注打三断| 教育| 百家乐路单生| 名仕百家乐官网的玩法技巧和规则| 新利国际网站| 如何胜百家乐的玩法技巧和规则 | 大发888娱乐场东南网| 百家乐百家乐视频| 百家乐官网台布兄弟| 顶级赌场手机版官方| 圣安娜百家乐包杀合作| 职业百家乐官网的玩法技巧和规则 | 江油市| 劳力士百家乐的玩法技巧和规则 | 大发888网上赌场官网| 属虎和属鼠合伙做生意| 百家乐官网园百利宫娱乐城怎么样百家乐官网园百利宫娱乐城如何 | 威尼斯人娱乐平台| 百家乐官网说明| 百家乐官网天下第一缆|