亿酷棋牌世界官方下载-娱乐休闲棋牌游戏

學(xué)術(shù)交流
位置: 首頁(yè) > 學(xué)術(shù)交流 > 正文

Qiaode Jeffrey Ge: On the mean and variance of rigid-body displacements

時(shí)間:2022-06-14來(lái)源:機(jī)械工程學(xué)院

報(bào)告時(shí)間:2022年6月16日(星期四)21:00-22:30

報(bào)告平臺(tái)騰訊會(huì)議  ID:723 990 484

報(bào) :Qiaode Jeffrey Ge 教授

工作單位:美國(guó)紐約州立大學(xué)

舉辦單位:機(jī)械工程學(xué)院

報(bào)告簡(jiǎn)介

Many applications in biomechanics and medical imaging call for the analysis of the kinematic errors in a group of  patients statistically using the average displacement and the standard deviations from the average.This talk studies the problem of computing the average displacement from a set of given spatial displacements using three types of parametric representations: Euler angles and translation vectors, unit quaternions and translation vectors, and dual quaternions.

It has been shown that the use of Euclidean norm in the space of unit quaternions reduces the problem to  that of computing the average for each quaternion component separately and independently. While the resulting algorithm is simple, the change of the sign of a unit quaternion could lead to an incorrect result. A novel kinematic measure based on dual quaternions is introduced to capture the separation between two spatial displacement. This kinematic measure is then used to formulate a constrained least squares minimization problem.  It has been shown that the problem decomposes into that of finding the optimal translation vector and the optimal  unit quaternion. The former is simply the centroid of the set of given translation vectors and the latter  can be obtained as  the eigenvector corresponding to the least eigenvalue of a $4\times 4$ positive definite symmetric matrix. It is found that the weight factor used in combining rotations and translations in the formulation does not play a role in the final outcome.Examples are provided to show the comparisons of these methods.

報(bào)告人簡(jiǎn)介

Qiaode Jeffrey Ge教授美國(guó)紐約州立大學(xué)石溪分校機(jī)械工程系主任,是ASME(美國(guó)機(jī)械工程師協(xié)會(huì))Fellow。主要研究方向包括計(jì)算設(shè)計(jì)方法, 機(jī)構(gòu)學(xué)/機(jī)器人學(xué), CAD/CAM, 計(jì)算機(jī)圖形學(xué)與VR技術(shù)的工程應(yīng)用。一直在ASME設(shè)計(jì)工程部門(mén)執(zhí)行委員會(huì)(DED)任職,并多次擔(dān)任ASME機(jī)構(gòu)學(xué)和機(jī)器人學(xué)委員會(huì)和ASME多個(gè)學(xué)術(shù)會(huì)議的主席和重要獎(jiǎng)項(xiàng)的評(píng)委會(huì)成員。他也多次擔(dān)任IFToMM世界大會(huì)(機(jī)械設(shè)計(jì)領(lǐng)域最頂級(jí)國(guó)際會(huì)議)的組織委員會(huì)的成員、首席美國(guó)代表和IFToMM美國(guó)成員組織主席。

Qiaode Jeffrey Ge教授目前是ASME的機(jī)械設(shè)計(jì)雜志(Journal of Mechanical Design)的機(jī)構(gòu)學(xué)方向主編,并曾擔(dān)任 ASME Journal of Mechanisms and Robotics、International Journal of Mechanics Based Design of Structures and Machines等機(jī)構(gòu)學(xué)與機(jī)器人方向國(guó)際著名期刊的副主編。自2002年起,他成為中國(guó)機(jī)械工程學(xué)會(huì)的機(jī)構(gòu)學(xué)委員會(huì)理事。他也是美國(guó)國(guó)家科學(xué)基金會(huì)的評(píng)審小組成員以及美國(guó)國(guó)家科研委員會(huì)、香港政府科研資助委員會(huì)、新加坡政府科研資助委員會(huì)和奧地利科學(xué)基金的評(píng)審人。

關(guān)閉

聯(lián)系我們:安徽省合肥市屯溪路193號(hào)(230009)  郵編:230009

Copyright ? 2019 合肥工業(yè)大學(xué)    皖公網(wǎng)安備 34011102000080號(hào) 皖I(lǐng)CP備05018251號(hào)-1  

本網(wǎng)站推薦1920*1080分辨率瀏覽

开封市| 百家乐官网清零| 大发888song58| 红黑轮盘| 百家乐5式直缆投注法| 金龙国际娱乐城| 博彩百家乐心得| 娱乐城873| 百家乐有好的投注法吗| k7娱乐城备用网址| 赌博百家乐秘籍| 太阳城百家乐官网的分数| 娱乐百家乐的玩法技巧和规则| 百家乐官网椅子| 网上棋牌游戏赚钱| 澳门百家乐代理| 百家乐官网十佳投庄闲法| 凯斯网百家乐的玩法技巧和规则| 百家乐官网博娱乐场开户注册| 新全讯网321| 网上百家乐哪家最好| 百家乐官网平台出租家乐平台出租 | 菲律宾豪门娱乐| 百家乐筹码素材| 百家乐官网发牌器8副| 大发888游戏币| 金沙百家乐娱乐城场| 百家乐官网蓝盾有赢钱的吗 | 百家乐偷吗| 百家乐官网的路子怎么| 百家乐官网现实赌场| 凌龙棋牌官方下载| 威尼斯人娱乐城最新地址| 百家乐清零| 网上百家乐的技巧| 威尼斯人娱乐城图| 百家乐最佳注码法| 风水做生意店铺的门| 新锦江百家乐官网赌场娱乐网规则 | 百家乐娱乐城棋牌| 巴比伦百家乐官网的玩法技巧和规则|